Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots.

نویسندگان

  • Liang Huang
  • Rui Yang
  • Ying-Cheng Lai
  • David K Ferry
چکیده

Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed 'coexistence' of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry-dependent conductance oscillations in graphene quantum dots

Utilizing rectangular graphene quantum dots with zigzag horizontal boundaries as a paradigm, we find that the conductance of the dots can exhibit significant oscillations with the position of the leads. The oscillation patterns are a result of quantum interference determined by the band structure of the underlying graphene nanoribbon. In particular, the power spectrum of the conductance variati...

متن کامل

Conductance Fluctuations in Graphene Systems: the Relevance of Classical Dynamics

Conductance fluctuations associated with transport through quantum-dot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. However, we find that in graphene quantum-dot systems, when a magnetic field is present, signatures of classical dynamics can disappear and universal scaling behaviour emerge. In particular, as the F...

متن کامل

Regular conductance fluctuations indicative of quasi-ballistic transport in bilayer graphene.

Quasi-periodic conductance fluctuations are observed in the low-temperature magneto-conductance of a bilayer graphene sample. The quasi-periodic nature of the fluctuations is confirmed by their Fourier power spectrum, which consists of just a small number of dominant frequency components. From an experimental study of these features, which are highly reminiscent of those reported previously for...

متن کامل

Conductance fluctuations in chaotic bilayer graphene quantum dots.

Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dira...

متن کامل

Chaotic behavior of the Compound Nucleus, open Quantum Dots and other nanostructures

It is well established that physical systems exhibit both ordered and chaotic behavior. The chaotic behavior of nanostructures such as open quantum dots has been confirmed experimentally and discussed exhaustively theoretically. This is manifested through random fluctuations in the electronic conductance. What useful information can be extracted from this noise in the conductance? In this contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 25 8  شماره 

صفحات  -

تاریخ انتشار 2013